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Trees are widely used to represent and solve problems in
Bayesian statistics, risk analysis, marketing statistics, reliability
theory, and Markov chains. But they have three limitations: (1)
for moderately sized problems, the tree becomes unwieldy; (2)
while the tree is very good at visually representing qualitative
relationships, it does not allow visual representation of quanti-
tative information; and (3) the tree is not easily represented on
a PC without special software. In the spirit of Tufte, this article
presents an alternative, the circular decision tree, which visually
represents all the information—problem structure, strengths of
relationship, and values of nodes—using colors and arc lengths.
Mathematical computations in the tree are accomplished by
“mixing colors” from adjacent segments. Furthermore, it is eas-
ily programmable in Excel. Hence it is especially suitable for
presenting problems to students and nontechnical audiences.

KEY WORDS: Decision trees; Excel modeling; Fault trees;
Markov chains; Value trees.

1. INTRODUCTION

A tree starts with a single “parent” node which then gives rise
to several “children” nodes at the second layer of the tree. Each
of these children nodes then gives rise to their own children at
the third layer of the tree, and so on, as indicated in Figure 1.

A wide variety of statistical phenomenon are represented us-
ing trees. For example:

1. Decision trees are used in data mining to create segments
which are homogeneous as possible with respect to some de-
pendent variable. Each successive layer in the tree represents a
partitioning of the population into subgroups based on the differ-
ent values of some independent variable. Thus, the population
21, at level 2, is split into subpopulations 121 and 221 based on
how these two subpopulations differ on their response to some
specific question.

2. Decision trees are used in risk analysis (Bernstein 1998)
to make optimal decisions in the presence of uncertainty (Baron
and Brown 1991; Berger 1985; Bordley 2001; Chernoff 1987;
DeGroot 1970; Lindley 1990; Skinner 1999) and lattice trees
are used in financial analysis to evaluate how a stock’s price
changes over time. In both these applications, each successive
layer in the tree represents different possible states of the world
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at successive points in time. The nodes 121 and 221 in Figure 1
represent the two possible states of the world at the third point
in time given you were at node 21 at the second point in time.

3. Fault trees are used in reliability theory (Barlow and
Proschan 1996; Gertsbakh and Gertsbakh 2000; Hoyland and
Rausand 1994; Tobias and Trindate 1995) to identify how var-
ious component failures contribute to the overall failure of a
system. The nodes 121 and 221 represent the two possible fail-
ures at layer three which either individually, or in combination,
could lead to the failure of node 21 at the second layer.

4. Value trees are used in marketing to specify how customer
satisfaction at an overall level relates to customer satisfaction at
more specific levels. They specify, for example, how satisfaction
with attributes 121 and 221 at level 3 relates to satisfaction with
the more general attribute 21 at level 2.

These are only a few of the many applications of trees.
As the number of layers expands, the tree often grows expo-

nentially into a gigantic bush (Raiffa 1967). Since such a tree is
uninterpretable, some practitioners never present trees to their
clients; other practitioners keep their trees artificially small by
preceding construction of the tree with sensitivity analysis aimed
at identifying and eliminating all but the most critical factors. To
solve this problem of uninterpretability in data mining, Johnson
(1993) proposed replacing the traditional node and arrow rep-
resentation of the tree by a circular tree. SAS implemented this
solution in some versions of its enterprise miner.

The author found that Johnson’s solution likewise provides
a compact way of representing trees in finance, marketing, risk
analysis, and reliability. But as this article shows, the circular
solution offers some additional benefits in these applications:

1. It allows all the quantitative information associated with
the tree to be completely represented visually. Tufte (1992, 1997)
established the importance of representing quantitative informa-
tion visually.

2. The recursive computations commonly associated with
“solving” trees can be done visually, on the circular tree, without
the explicit use of any mathematics. (Hence even mathematically
unsophisticated audiences can create and solve trees.)

3. The circular tree can easily be programmed in Microsoft
Excel (Microsoft Excel 97, 1997) using Excel’s Doughnut chart.
Since many statistical courses presume access to Excel (e.g.
Levine, Berenson, and Stephan 1998), this allows the user to do
tree analyses without specialized software.

These features are important because many potential clients
are:

1. Unfamiliar with statistics. Hence highly quantitative for-
malisms are not helpful.

2. Skeptical of black boxes. While clients in the past may have
accepted a statistician’s conclusions out of blind faith, today’s
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Figure 1. A general tree.

clients often insist not only on understanding the results but also
the reasoning, data, and assumptions that led to the results.

3. Self-reliant. Some, though not all, clients prefer to con-
duct analyses internally, even if specialized in-house technical
resources are lacking.

For these reasons, being able to construct and solve trees vi-
sually using Microsoft Excel could greatly facilitate the use of
trees in marketing, risk analysis, finance, and reliability.

This article illustrates our approach to decision risk analysis
trees (Barabba 1991; Howard 1988; Kusnic and Owen 1992;
Skinner 1999) applied to technology projects (Bordley 1998;
Sharpe and Keelin 1998). Technology projects typically involve
several phases:

1. A research phase in which concept feasibility is estab-
lished;

2. a concept development phase aimed at establishing proof
of concept;

3. a preliminary design phase where a high-level concept is
developed and tested;

4. a detailed design phase;
5. the early commercialization phase; and
6. the later commercialization phase.
At the end of each phase, a project is evaluated and is either

cancelled or allowed to proceed to the next phase.
The author was commissioned to evaluate 100 R&D projects

in a major corporation. This involved collecting data on the prob-
ability of each project passing from one stage to another and on

the potential value of the project if it successfully completed ev-
ery phase. (These probabilities were estimated either from data
on related projects, from stock market prices—using options
pricing techniques—or from expert judgment.) Decision trees
were constructed for every project.

Although the effort involved hundreds of projects, this arti-
cle considers a single project involving eight scientists working
over four years. For illustrative purposes, we initially focus on
a highly oversimplified description of the project in which:

1. The cost of the project, including the salaries of the scien-
tists and their project expenses, was $10 million.

2. The four developmental phases of the project are treated as
a single phase with two major technical hurdles, one with a 50%
chance of being overcome, the other with a 40% chance of being
overcome. Treating these two uncertainties as independent gave
a 20% chance of being technically successful.

3. The two commercialization phases are treated as a single
phase. If the economy is strong, then demand for the product
resulting from the project will be good and the firm could expect
to earn an overall profit of $100 million. If the economy is weak,
then the firm would expect to earn only $10 million. Analysis
suggests that there is a 50% chance of the economy being strong;
otherwise it will be weak.

This representation is oversimplified but it allows us to de-
scribe the circular decision tree methodology. At the end of the
article, we illustrate how a more realistic version of this problem
would be represented using circular decision trees.

Figure 2. A decision tree for a simple R&D problem.
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Figure 3. Solving the simple R&D decision tree.

The conventional decision tree would represent this problem
as shown in Figure 2.

This decision tree represents three points in time:

• At time 1, we make a decision about whether to fund.

• At time 2, we learn about the immediate implications of
what happened at time 1; that is, whether the project was funded
and successful, whether it was funded and failed, or whether it
was not funded.

• At time 3, we learn the immediate implications of what
happened at time 2; that is, whether the project was successful
and had high payoff, was successful and had low payoff, was
not successful, or was not funded.

Decision analysis then assigns an intermediary payoff to each
node of the tree based on the possible payoffs arising immedi-
ately after that node. If the node represents an uncertainty, the
intermediary payoff is the expectation of the possible payoffs
occurring after that node. If the node represents a decision, the
intermediary payoff is the maximum of the possible payoffs oc-
curring after that node. Thus, the intermediary payoff attached to
the “uncertainty” node “Profit” is 50% of $100 million plus 50%
of $10 million or $55 million. The intermediary payoff attached
to the uncertainty node, “Project,” is 20% of the value assigned
to “Profit” (or $55 million) plus 80% of the value assigned to
project failure(or −$10 million) which equals $3 million. Fi-
nally the payoff attached to the decision node, “Fund,” is the
maximum of the payoff attached to the project (or $3 million)
and the payoff attached to no funding (or 0), which equals $3
million. This gives us Figure 3.

Representing this simplistic problem with a decision tree in-
volves the explicit use of 11 numbers (representing the more
realistic problem in Section 4 involves 75 numbers). As a result,
the decision tree representation will be unattractive to executive
audiences.

2. THE CIRCULAR TREE: STRUCTURING

2.1 Description of the Circular Tree

The circular decision tree, like the classical decision tree,
models the problem beginning with the first layer (correspond-

ing to the first point in time), the second layer (corresponding to
the second point in time), and so on. It starts by drawing a small
circle.

To represent the first layer of the decision tree (corresponding
to the first point in time), we draw a ring around this circle. In
our example, there is a decision at this layer with two possi-
ble choices. We assign 50% of the ring to the first choice and
50% of the ring to the second choice. This involves splitting the
ring into two segments, one segment corresponding to the first
choice (funding the R&D), and one segment corresponding to
the second choice (not funding the R&D.)

This represents a one-layer decision tree.
To represent the second layer (corresponding to the second

point in time), we draw a second ring around this first ring. We
then extend whatever cuts were drawn in the first inner ring into
this second ring. In our example, this causes the second inner ring
to be divided into two segments. We now focus on the segment
which is adjacent to the “Fund” portion of the first ring.

Our decision tree indicates that the fund decision is following
by an uncertainty about whether or not the project will be suc-
cessful. The two possible outcomes are “project success” and
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“project failure.” The probability of “project success” was 20%
and the probability of “project failure” was 80%. We now cut
this segment into two pieces—one corresponding to “project
success” and one corresponding to “project failure.” As before,
we will later extend this cut to all rings containing this second
ring. Of the total area of the original segment, 20% is assigned
to the subsegment corresponding to “project success” and 80%
to the subsegment corresponding to “project failure.”

Now consider the portion of the second ring adjacent to “no
funding.” Since there is no uncertainty, we do not cut the ring
adjacent to “no funding.” This gives us

(Outcomes of decisions will be labeled with bold while out-
comes of an uncertainty will be labeled in standard font.)

We now turn to the third and last layer in our example. As
before, we represent this layer by drawing a third ring about
the second ring. Because we extended the cuts in the second
ring into the third ring, this third ring will have already been cut
into three pieces. We focus first on that portion of the third ring
which is adjacent to “project success.” The third layer of the
decision tree indicates that there is one uncertainty following
project success—which has two possible outcomes “high” or
“low.” Both are equally likely. As before, we now cut this portion
of the third ring into two equal parts, with one part labeled “high”
and the other part labeled “low.” We then focus on the portion
of the ring adjacent to “Project Failure.” In this case, there is no
uncertainty following project failure so that, again, there is no
need to split this segment further. We then focus on that portion

adjacent to the ring which is adjacent to the decision not to fund.
Since there are no uncertainties, we do not cut the ring.

This leads to the following representation.
In summary, we structure a problem using a circular decision

tree as follows:

1. If the problem involves n layers(or points in time), draw
n + 1 concentric circles.

2. If the first layer of the problem involves a decision with
m possible choices, split the first ring—and all rings containing
it—into m equal parts. If this layer involves an uncertainty with
m possible outcomes, then split the first ring—and all rings con-
taining it—into m parts with the area of each part proportional
to the probability of the associated outcome occurring.

3. The segmentation of this layer induces a segmentation of
the next higher layer. We now focus on each segment induced
in this next higher layer. If the segment corresponds to the oc-
currence of a decision with m∗ possible outcomes, then split
the segment—and all segments immediately above it—into m∗

equal portions. If the segment corresponds to the occurrence of
an event with m∗ possible outcomes, then split the segment—
and all segments immediately above it—into m∗ parts with the
area proportional to the probability of each outcome occurring.

4. Repeat this procedure with each successive layer.

2.2 Representation of the Tree in Microsoft Excel

To create this circular decision tree in Microsoft Excel, we
create one column in Excel for each of the layers in the decision
tree. Our example involved three layers. In the first layer, there
were two outcomes: “funding” or “no funding.” Since this was a
decision layer, each outcome was assigned an equal proportion
of the space. Hence in the first column, we enter the proportions,
0.5 and 0.5, for these two outcomes. In the second column, there
are three outcomes, “no funding,” “funding and success,” “fund-
ing and failure.” The proportions corresponding to those three
outcomes are 0.5, 0.5 × 0.2 = 0.1, and 0.5 × 0.8 = 0.4. We en-
ter these three numbers in the second column. In the third layer,
there were four outcomes: “no funding,” “funding and failure,”
“funding and technical success and low sales,” “funding and
technical success and high sales.” The proportions correspond-
ing to those four outcomes are 0.5, 0.5 × 0.8, 0.5 × 0.2 × 0.5,
and 0.5 × 0.2 × 0.5. We enter those four numbers into the third
columns. Hence our spreadsheet will look like

A B C D
1 0.5 0.1 0.05
2 0.05
3 0.4 0.4
4 0.5 0.5 0.5
5

These three columns represent three series in Excel. We click
Insert/Chart/Doughnut on the Excel toolbar to get Excel to cre-
ate the corresponding doughnut chart. Since Excel creates an un-
labeled doughnut chart with arbitrary colors and a large dough-
nut hole, getting the specific doughnut chart described in this
article involves three further steps:

1. Click on each sector in the chart to change the colors Excel
assigned to “white.”
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2. Click on the chart and then on options to reduce the size of
the doughnut center to the smallest possible value. We can also
rotate the chart.

3. Click Insert/Picture/Wordart, create the words, “No,”
“Yes,” and “Fund” and attach these labels to the appropriate
spaces in the chart. This gives the doughnut representation de-
scribed previously.

The next section focuses on quantification of the tree—which
corresponds to choosing how rings will be colored.

3. THE CIRCULAR TREE: QUANTIFICATION

Just as there are two ways to structure the tree, so there are
two corresponding ways of quantifying the tree. We first discuss
a manual approach to quantifying the tree. We then discuss an
approach using Excel and a small Visual Basic macro.

3.1 Manual Quantification of the Circular Tree

Our circular tree represents the probabilistic information in
the decision tree using the width associated with segments.
Hence probabilities do not need to be written down on the cir-
cular decision tree. The other piece of quantitative information
used in a decision tree is the payoffs associated with various
branches. To represent this information on our circular tree, we
follow standard decision analysis practice in ranking the pay-
offs from best to worst. We deviate from standard practice in
associating colors (or shadings) with each payoff. The best pay-
off is colored “white” and the worst payoff is colored “black.”
(Obviously the reader can alter these conventions freely.) In-
termediate payoffs are assigned intermediate shades of color in
proportion to their relative value. When payoffs are financial or
easily quantified, we might translate the numerical value into
a degree of shading. In this example, the four possible payoffs
of $100 million, $10 million, zero, and −$10 million are trans-
lated into white, gray, dark gray, very dark gray, and black,
respectively. When payoffs are difficult to quantify, we might
choose to bypass explicit quantification and have the individual
directly assign colors using principles of cross-modality match-
ing (Stevens and Galanter 1957).

The classical decision tree assigns payoffs to the endpoints
of the decision tree. In the circular decision tree, we color the
segments in the outer ring according to their payoffs. In the case
of our technology project example, this gives us:

After assigning payoffs to the endpoints on the tree (i.e. to the

last stage), the classical tree proceeds to the next to the last layer

and, for each node, in that layer

1. Writes a number on that node which—if the node is fol-

lowed by an uncertainty—is the expected value of the endpoints

arising from that node.

2. Writes a number on that node which—if the node is fol-

lowed by a decision—is the maximum value associated with any

of the endpoints arising from that node.

Continuing recursively in this way eventually leads to an as-

signment of a number to every node. This is known as “folding

back” the decision tree. As we now show, the circular decision

tree provides an alternate way of “folding back” the decision

tree which makes no explicit use of calculations.

Suppose we have colored the segments in the outer ring. Con-

sider the ring immediately within this outer ring. To color a seg-

ment in this ring, we look at the color of the segments that are

immediately above this ring. Consider the second-layer segment

which is immediately below a third-layer segment that has been

colored “black.” We color that second-level segment “black.”

Suppose that there are several segments above the segment in

question and that these segments represent the different out-

comes of an uncertainty. Then we color the segment in question

by proportionately “mixing” the colors of these segments. For

example, consider the second-layer segment below two equally

sized third-layer segments, one of which is “white” and the other

of which is “gray.” We color this second-level segment “light

gray.”

We repeat this procedure to color the first-layer ring. There is

one first-layer segment lying below two second-layer segments,

one of which is “light gray” and the other of which is “black.” The

length of the “light gray” segment is one quarter of the length of

the “black” segment. Mixing the colors gives “dark gray.” Hence

we color the first-layer segment “gray.” Now consider the first-

layer segment that lies completely below a second-layer segment

which is colored “very dark gray.” That first-layer segment is

colored “very dark gray.”
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When we get to the center, we look at the colors of the seg-
ments that surround the center. Since the segment is a decision
segment, the color of the center will be the lighter of the two col-
ors present in the decision segment. Hence we color the center
“dark gray.” This gives

Thus, the value of this decision tree is dark gray—which cor-
responds to a payoff of 3.

We have “solved” the decision tree without explicitly using
any numbers! Note that in examining this circle, the human eye
can immediately discern a small sliver of “white” against a back-
ground of dark colors. This indicates that the R&D represents
a small chance of a very good outcome and a large chance of a
poor outcome.

3.2 Quantification of the Tree using Excel and a Visual
Basic Macro

As Section (2.2) noted, the circular decision tree can be struc-
tured in Excel. We can also color the tree in Excel by clicking
on each region and then changing the color of that region to the
desired color. But since the colors in the inner layers are deter-
mined by the colors on the outer layers, a small Visual Basic
macro was created that colors the inner layers automatically.

Table 1. State Matrix

Layer Fund? Success? Payoff?

No funding 0.5 0.5 0.5
Funding & succcess & high payoff 0.5 0.1 0.05
Funding & success & low payoff 0.05
Funding & failure 0.4 0.4

Table 2. Payoff Matrix

Layer Fund? Success? Payoff?

No funding 0 0 0
Funding & succcess & high payoff 3 55 100
Funding & success & low payoff 10
Funding & failure −10 −10

This macro involved the creation of three matrices. The first
“state” matrix (Table 1) corresponded to the matrix of three
columns created in Section 2.2. Every cell in this matrix with a
positive number corresponds to a region in the doughnut chart.

We then created a second “payoff” matrix (Table 2) with an
entry for every entry in the uncertainty matrix. The last column
of the payoff matrix, which corresponded to the outer layers
of the Doughnut chart, is filled in with the appropriate payoffs.
The next to last column of this matrix is filled in by computing
the appropriate probability weighted average of entries from the
last column. (If the next to the last column represents a decision,
the appropriate number corresponds to the maximum of the ap-
propriate entries from the last column.) The column preceding
this next to last column is constructed in a similar fashion. We
continue until the matrix was complete.

We also created a third “utility” matrix (Table 3) that corre-
sponded to the outcome matrix with all elements rescaled to lie
between zero and one.

Finally we created a legend that mapped numbers from zero
to one into various shades of color. The numbers 0 to 0.05 were
mapped into white. The numbers 0.95 to 1 were mapped into
black. Intermediate numbers were assigned intermediate shades
of gray.

Our Visual Basic code used the state matrix to structure the
doughnut chart and used the utility matrix and the legend to color
the doughnut chart.

4. A MORE REALISTIC EXAMPLE

4.1 Problem Description

Actual R&D problems are often considerably more compli-
cated than the problem considered here. To understand how the
circular decision tree would handle more realistically compli-
cated problems, consider a technology evaluation problem in
which:

1. There are three competing ways of designing a project for
eight scientists:

• one possible project design (Design A) involves low tech-
nical risk;

Table 3. Utility Matrix

Layer Fund? Success? Payoff?

No funding 0 0 0
Funding & succcess & high payoff 0.11 0.59 1
Funding & success & low payoff 0.18
Funding & failure 0 0
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Figure 4. A decision tree for a complex R&D problem.

• a second possible project design (Design B) involves a new
technology; and

• a third possible project design (Design C) involves a tech-
nology which has been used on a different product.

2. The project must transition through four development
phases:

• research to establish technical feasibility;
• concept development to establish proof of concept;
• preliminary design to develop a high-level prototype; and
• detailed design to develop a product.

3. There are two phases in commercialization:

• initial commercialization; and
• late commercialization in which competitors have reacted

to the new product.

4.2 Conventional Decision Tree Solution

The decision tree for this more realistic, but still simplified
problem, is shown in Figure 4. For the first design, it presumes

there is a 90% chance of feasibility being established and a 10%
chance of failure to establish feasibility. The cost of failure at
this branch is $1 million. Given the project is determined to be
feasible, there is an 80% chance of successfully developing a
proof of concept. The cost of failure at this stage is $5 million.
Given a successful proof of concept, there is an 90% chance of
a successful preliminary design. The cost of failure is now $25
million. Given a successful preliminary design, there is an 80%
chance of a successful detailed design. The cost of failure at this
point is $125 million. (Naturally the costs of failure increase
as we go to later and later stages.) Given a successful detailed
design, the probability of a good initial sales response is 20%.
Regardless of whether there is a good sales response or not,
there is a 90% chance of the competition reacting quickly with
a product or promotion which steals some of these initial sales.
There is a 10% chance that the competition will be slow to
develop an effective response.

Design B will differ from Design A in having a lower chance
of passing the feasibility and proof of concept hurdle and a lower
chance of being quickly thwarted by a competitive response.
Design C will have a good chance of passing feasibility but a
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Figure 5. A circular decision tree for a complex R&D problem.

lower chance of reaching proof of concept. It has an intermediate
chance of being quickly thwarted by the competition.

We now discuss how a circular decision tree would represent
this problem.

4.3 Circular Decision Tree Representation

Since there are three alternatives, the circular decision tree is
initially split into three (Figure 5). The lower third of the circle
will focus on Design B, the rightmost third on Design A and the
leftmost third on Design C.

Consider the region assigned to Design B. If we move down
one layer, we either enter a big zone labeled “technical feasibility
failure” or a “pass” zone. If we enter the pass zone, then moving
further down takes us either into a big zone labeled “proof of
concept” failure or a pass zone. If we enter the pass zone, we
see that successive layers are mainly light-colored with only tiny
failure zones. They terminate in the white zone, “high sales with
slow competitive response”—which represents the best possible
result. Hence if we avoid the technical feasibility and proof of
concept failure zones, we have an excellent chance of moving
to the highest payoff “white” region.

To analyze Design A, return to the center and start moving

to the right. With Design A, the failure zones are all somewhat
small. But the failure zones associated with later layers are still
much thicker than in Design B. In particular, we see that one
failure zone, “detailed design failure,” is colored black and is
much larger than the corresponding failure zone in Design B.
We also see that the white region is much smaller with Design
A than it was in Design B. As a result, the color assigned to the
design A layer is darker than the color assigned to the Design B
layer; that is, Design A is of lower value.

Hence our analysis appears to favor designs that concentrate
most of the project’s risk in the early phases of research.

To analyze Design C, return again to the center of the circle
and move to the left. In this case, we find that the zone of tech-
nical feasibility failure was small. If we get past this layer, the
zone of concept failure is fairly large. If we get past this failure
zone, the remaining failure zones are small, but not trivial. The
white zone associated with the best possible outcome is smaller
than with Design B. On balance, Design C is slightly worse than
Design B—which is reflected in the color assigned to it.

Informal surveys of several individuals familiar with the com-
pany’s development process indicated that all found the dough-
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nut representation easier to understand than the conventional
decision tree.

5. BENEFITS OF A CIRCULAR TREE

5.1 Visual Presentation of Probabilities and Payoffs

The conventional decision tree is built from one-dimensional
lines and nodes. Hence information about probability and value
must be represented by writing numbers next to lines and nodes.
In contrast, the circular decision tree is constructed from two-
dimensional objects. This added dimension allows probabilistic
information to be represented by varying the width of these ob-
jects and value information by varying their color. No numbers
are explicitly needed. In addition, the computational algorithm
used to solve decision trees corresponds to mixing colors in an
intuitively natural way.

5.2 Visual Solution of Decision Trees

There are many proposed approaches for visually representing
the results of an analysis. But the circular tree makes the entire
analysis (as well as the results) visual. This may reduce the
chances of rejection by clients who cannot, or do not have the
time to, understand a mathematical analysis. Since the circular
tree visually represents the entire analysis, it may also reduce the
chances of oversimplification by clients tempted to summarize
the analysis with a single number like the expected value. It also
may address the not-invented here syndrome by allowing the
clients to do the analysis themselves.

5.3 Identification of Which Uncertainties are Most
Critical

In decision analysis, it’s common—after the tree is
constructed—to do a sensitivity analysis to identify the less criti-
cal uncertainties (i.e., those which do not provide good discrimi-
nation between good and bad outcomes.) These uncertainties are
then removed from the tree. The circular representation suggests
an alternate way of treating less critical uncertainties.

First note that trees in data mining always place those uncer-
tainties first, providing the most discrimination between good
and bad outcomes. Following this example, we propose that the
circular tree, after it is first constructed, be modified by mov-
ing the most critical uncertainty layers closer to the center. As
a result, adjacent areas of the tree (especially areas in the outer
rings) will tend to have similar colors, leading to a visually more
compact (and more comprehensible) representation. Less crit-
ical uncertainties, instead of being deleted, are assigned to the
outer rings. (If we click on the diagram and then on “series or-
der,” Excel allows us to interchange the order of the rings.)

5.4 Representation of an Infinite Number of Possible
Outcomes

The conventional decision tree requires that the number of
outcomes emerging from a given node be limited since an in-
dividual cannot be expected to reasonably distinguish between
more than five or six branches from any single node. In contrast,
the circular tree could allow for a much larger number of out-
comes for a given uncertainty. And, in fact, we could represent an
infinite number of outcomes by coloring the wedge representing
the uncertainty by a continuously varying set of colors.

[Received March 2001. Revised February 2002.]
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