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Abstract

Bayesian techniques specify how to update beliefs about a variable given infor-
mation on that variable or related variables. In many cases, statistical analyses also
provide information about the relationship between variables, but the Borel Paradox
prohibits many natural ways of updating beliefs conditioned on information about a
relationship. This paper presents a method by which beliefs can be updated without
violating the Borel Paradox under certain circumstances. We apply our approach to re-
lationships specified by a statistical model (i.e., regression), and relationships described
by statistical simulation.

1 Introduction

Bayesian techniques specify how to update prior beliefs about Y given information on some
variable X (where X is a column vector and Y is typically a scalar). In many cases, however,
statistical analysis directly provides information on the relationship between Y and X; for
example:

e a decision maker is presented with a statistical model (i.e., a regression) relating Y and
X

e a decision maker is presented with the results of a simulation that specifies the values
of Y resulting from various choices of X

In this case, applying Bayes Rule is more complicated than when simply updating beliefs
given information on a variable. As a result, the authors have observed practical contexts
where Bayes Rule is misapplied.

As an illustration, let ¢ denote the new relational information arising from a statisti-
cal analysis. One common approach for estimating Pr.{Y|¢} combines the analysis-based
probability Pr.{Y|X, ¢} with the decision maker’s prior probability Pr.{X} to derive the
inferred estimate, [, Pr.{Y|X, ¢} Pr.{X}. This approach is only consistent with Bayes Rule
when Pr .{X|¢} = Pr.{X}. Thus, this approach presumes that the information ¢ does not
change the decision maker’s prior probability on X.

Suppose, however, that the decision maker is already fairly comfortable with his prior
probability distribution over Y. If the analysis implies that this prior distribution should
change significantly, the decision maker will often question the inputs to the analysis. Even
if those inputs came from the same decision maker, he might be more willing to view them
as wrong than to change his beliefs about Y. If he has little confidence in his beliefs about



X, the decision maker might even invoke the celebrated Garbage-in/Garbage-out maxim and
reject whatever the analysis says about Y.

Since the variable of interest is typically Y (rather than X), this effectively reduces
the value of doing the analysis (and may even get the analyst fired). While it may be
embarrassing for the analyst’s model to be rejected, there is clearly no reason to believe that
the client should change his beliefs only about outputs and not about inputs. Nonetheless,
dismissing the analysis by changing only beliefs about inputs, rather than outputs, is just
as simplistic. An alternative, less simplistic, approach first updates priors on X, by using
the model to make predictions about values of Y for which the decision maker has good
intuitions. Then, the updated priors on X are held fixed and the model is used to make
inferences about the posterior value of Y. Although this second approach is better, this still
does not represent an exact Bayesian approach to this problem — and hence does not fully
utilize all available information.

A fully Bayesian distribution on Y, given the new information ¢, updates beliefs about
both Y and X, using the information ¢ about how Y and X are related. In other words,
we would like to be able to use ¢ to update the decision maker’s priors on both X and Y to
get:

Pr {XY|¢} x Pr {¢| XY} Pr {XY} (1)

from which Pr.{Y|¢} can be computed. In some cases, the new information ¢ can be
interpreted as specifying the exact functional relationship between X and Y (for example, ¢
might specify Y = X.) When ¢ does specify the exact functional relationship between Y and
X, equation(1) is equivalent to an existing technique known as Bayesian synthesis (Raferty,
Givens & Zeh, 1992). In the language of Bayesian synthesis, X, Y are parameters, Pr.{X,Y}
is the pre-model distribution and Pr.{XY|¢} is the post-model distribution arising from
using the deterministic model ¢ to restrict the parameters to some subspace.

The functional relationship, ¢, specifies a value of y for each possible value of z, or,
conversely, it specifies the impossibility of observing an infinite set of possible combina-
tions of (z,y). As a result, the decision maker’s prior beliefs often assign a probability of
zero to the set of possible (z,y) pairs that are perfectly consistent with the model. This
makes conditioning on ¢ ill-defined so when probabilities over a lower-dimensional space are
inferred from probabilities over a higher-dimensional space, the resulting conditional proba-
bility densities need not be invariant with respect to variable transformations. This failure
of invariance, known as the Borel Paradox, means that simple reparameterizations of the
model that, in principle, should not matter (like transforming X from length to area) lead
to different results. Proschan & Presnell(1998) demonstrate this problem in computing the
probability of Y conditioned on Y = X when prior beliefs have X, Y independent Gaussian
random variables. Schweder & Hort (1996) and Wolpert (1995) verified the seriouness of
the Borel Paradox for Bayesian synthesis by showing how the results of Bayesian synthesis
varied arbitrarily with different variable transformations. These concerns ultimately led to
the abandonment of Bayesian synthesis (Poole & Raftery, 2000).

However, we would argue that there are many realistic contexts in which the decision
maker’s prior distribution does assign nonzero measure to the set of (x,y) pairs that are



consistent with the model ¢. For example, the error term in stochastic models typically
allows a wide range of y values for each x value because of randomness. Specifically consider
the case where a decision maker is offered the linear model

Y:ﬁg—l—ﬁ/X—i—E

where (8 is a column vector with (3 denoting its transpose and € is a Gaussian random
variable. Suppose the decision maker’s prior beliefs about X and Y are Gaussian with
means my,my and with Yxx, X xy,Xyy being the variance-covariance matrix among the
X'’s, the covariance between the X’s and Y, and the variance of Y. As Appendix I shows,
these Gaussian prior beliefs over X,Y are equivalent to prior beliefs over X and a new
uncorrelated Gaussian variable, ¢, defined by ¢ = Y — ap — o/ X ( where the scalar «y, the
column vector a, and the variance of €y are all computable from from the variance of Y, its
covariance with X, and the mean of Y.) Thus, an individual with a Gaussian prior over X
and Y can be viewed as implicitly relating ¥ to X via a linear model. So the individual,
faced with the linear model Y = [y + 6'X + ¢, will assign the model nonzero measure and
interpret the model as providing information on the parameters ag, o and the variance of €.
Under these circumstances, the Borel Paradox is avoided, and the individual’s prior beliefs
about X and Y can be updated in the conventional Bayesian fashion.

More generally, note that any infinitely differentiable functional relationship between
Y and X can be represented by a Taylor series, with coefficients describing all possible
derivatives of Y with respect to X. Hence, both the decision maker’s prior beliefs about X
and Y and the proposed new model can be rewritten in terms of the Taylor series although
the Taylor coefficients of the model will typically differ from the coefficients implicit in the
decision maker’s prior beliefs. Thus, the model provides new information on the coefficients
in the decision maker’s prior model. This new information allows the decision maker to
update his prior beliefs about X, Y.

The next section illustrates this approach when the decision maker is given a linear
model relating Y to X. As we show, the same result can be derived using a procedure called
Bayesian Melding by combining the decision maker’s prior on Y with the model prediction
(based on the decision maker’s prior on X) as if they were two correlated forecasts. The
third section illustrates our approach when the decision maker is instead given the results of a
simulation or other experiment relating Y to X. In this case, we find that beliefs about both
Y and X change (contrary to some arguments that simulation results should not change
beliefs about inputs). However, we find that beliefs about inputs are updated somewhat
differently than beliefs about outputs. In both cases, the decision maker is assumed to have
a Gaussian prior over X and Y.



2 Updating One’s Beliefs Given an Analytical Model

2.1 Bayesian Solution

Suppose the individual’s new information, ¢, is an analytical model of the form
Y=0+0X+e

where v is the (known) variance of €. Then if the decision maker knows X and Y, the only
way the model, ¢, can be valid is if e = Y — 5 — #’X. Thus we write Pr.{¢|X, Y}, which
describes the likelihood of the model being valid, as proportional to the probability density
of e =Y — By — f'X. Since € is assumed Gaussian with known variance v, the probability
density of ¢ given Y and X is proportional to exp(—i(Y — By — f'X)?). As Appendix II
shows, this implies:

Proposition 1: Suppose X, Y are Gaussian with means m x, my and variance-covariance
matrix . Let Z be a K 4+ 1 column vector whose first K components equal X and whose
last component is Y — [y (with mz denoting the mean of Z). Let B be a K + 1 column
vector whose first components equal —3, and whose last component equals 1. Define the
relative variances of the variables (X,Y") by the elements of the following column vector:

By
v+ B'SB

Note that Gy + 'mx — my measures the degree to which the model is inconsistent with the
individual’s prior beliefs. Then the posterior density of Z is Gaussian with mean

mzye = mz(1 — B'w) = mz + (B + B'mx —my)w
and variance (1 — B'w).

Proof : See Appendix II.

Thus, the change in each variable’s mean value equals the product of the expected error
in the model — given the prior beliefs — and the proportion of variance associated with
each variable. If wy is the last element of w, then we have

_ Yyy — FExy
v+ Yyy — 20'8xy + B Xxx

(2)

Wy

so that Y has posterior mean

Myl = my (1 — wy) + (Bo + F'mx)wy (3)
and posterior variance
Yyy —wy 3 Yxy (4)
As a result, the percentage reduction in variance arising from the model ¢ is
)y
wy [l — ﬁ/ﬂ]
Yyy

We now compare this solution with a proposed heuristic solution to the problem.
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2.2 Bayesian Melding

After Bayesian synthesis was abandoned because of the Borel Paradox, Roback (1998),
Roback & Givens(1999) and Roback & Givens (2001) proposed a supra-Bayesian approach.
In this approach, an inferred distribution on Y is constructed by coupling the decision
maker’s prior distribution over X with the newly proposed statistical relationship between
X and Y. The inferred distribution on Y is then combined with the prior distribution on
Y to get a posterior distribution using ‘supra-Bayesian’ techniques (Morris, 1977; Winkler,
1981; Bordley, 1982; Lindley, 1983; French, 1985; Genest & Zidek, 1986). These techniques
are called supra-Bayesian because they require additional criteria beyond what the Bayesian
formalism requires (e.g., Madansky, 1978).

In our particular problem, a supra-Bayesian approach might view the decision maker as
combining two forecasts of Y:

e a forecast Y, based on his prior beliefs about Y, which treats Y as Gaussian with
mean my

e a second forecast Y; = Gy + (X + € based on the prior distribution of X, so that the
mean of Y7 is m} = [y + F'mx

Then, as Appendix III notes, these forecasts are inversely weighted by their correlation-
adjusted variances and normalized (Bordley, 1986) to produce the combined forecast:

mi = my (1 —w}) + wimy, = my (1 —wi) + (Go + Bmx)ws

where ,
ZY()Y() - /6 2Y())(

Yoo — 208y, x + B XxxfB +v

Thus, the solution arising from interpreting this problem as a problem in combining forecasts
is, in fact, consistent with the fully Bayesian approach. Note, however, that achieving
this consistency required careful consideration of the correlation between the two forecasts.
Neglecting the correlation would have erroneously estimated wj- as zyoyof;@x Ew which
would have overestimated the amount of weight to assign to the new forecast. Clemen
& Winkler (1995) rightly stress the importance of adjusting for the correlation between

forecasts.

*_
wy—E

These results are consistent with Roback and Givens(2001)’s proposed use of forecast
combination techniques to update a decision maker’s prior beliefs about ¥ and X in light of
analytical information on how Y and X relate. In other words, what they termed a supra-
Bayesian approach coincides — in the Gaussian case — with the conventional Bayesian
approach. However, as we now show, forecast combination does not seem as applicable for
integrating information from simulations or other experiments.



3 Updating One’s Beliefs Given Experimental Results

The previous section focused on the case in which the individual learned of a model specifying
the exact relationship between the scalar Y and the vector X. In the case of an experiment,
the experimenter prespecifies a vector of input values X (1),...X (m), and observes the corre-
sponding output values Y (1),...Y (m). Hence, the information provided by the experiment
is the sequence:

(X(1),Y(1)), ..., (X(m),Y (m))

If X is a vector of length K, this sequence can be written as
(X1(1), ... Xk (1),Y (1)), ..., (Xi(m),.. Xk (m),Y(m))

Even though the model does not explicitly specify the parameters 3y and ( relating X to
Y, the decision maker’s prior over those parameters will still be relevant. Since the decision
maker is familiar only with X and Y, it seems reasonable to assume that any information the
decision maker has about 3y and 3 can be completely derived from his beliefs about X and
Y in the model Y = 3y + ' X + €. Thus the decision maker will not be able to discriminate
between different values of 3y and 8 that are all equally consistent with the values of X and
Y (in the sense of having equally large or small values of €). More specifically, we will assume
that the probability distribution over all values of 3y, # consistent with any particular values
of X and Y is uniform. As we show, given this assumption, we have the following result:

Proposition 2: Suppose we run 7 trials of the experiment in which the vector of input
values has mean X and variance-covariance V. Suppose that the resulting output has mean
Y with variance 52, and that the observed correlation between inputs and outputs is r. Let
t=X-—Xandy=Y —Y. If the variance in the simulation noise is given by a nonzero
value v, then defining the factor v(z) = 2(1 + 2’V ~'z) implies that

(y —r'z)”

Pr.{a:,y|f(,f/,r} X |?J(ZL')|_1 eXp(_ 2,0(3:)

) Pr(z,y)

Proof: See Appendix IV.

Note that the likelihood function in the proof of Proposition 1, exp(—i(Y —Bo—03X)?),

corresponds to the likelihood function in Proposition 2 with 5y =Y — X ,B=r,and v =
v(z). Thus, Proposition 2 differs from Proposition 1 only in that the variance v(x) increases
for experimental results associated with inputs that the decision maker considers unlikely a
priori. By discounting outliers in this manner, the results in Proposition 2 effectively reduce
the variability among the experiment’s inputs. The resulting joint distribution is, of course,
not Gaussian.

However, the distribution of Y (conditional on z) will be Gaussian with posterior condi-

tional variance
9 1
O' = —-—m——
x|¢ 1 1
v(z) Zyy|e
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and posterior conditional mean

Mmy|z,eg = —1

my |z
ZyYle
1

XvYle

Define the adjusted difference between the prior mean of Y and the simulated mean by

My |g r'z

(o) = 2

Zvyle v(z)
Then, as Appendix V shows, the marginal posterior distribution of x has the form

2YY\ac

—v(qz) S exp(—i&(x)) Pr {z}

which is a non-Gaussian adjustment of the decision maker’s Gaussian prior on x that essen-
tially reduces the likelihood of input values leading to implausible values of y. If Xyy|, is
large (i.e., if the decision maker doesn’t consider y to be highly predictable from z), then
the resulting change in the prior probability of x will be small. Also, note that the degree of
adjustment will be smaller for input values that the decision maker considers unlikely (i.e.,
for cases where v(x) is large).

These results are directly relevant to a debate (Andradottir & Bier, 2000) in the literature
over whether the results of a simulation provide information on the inputs to that simulation.
Chick (1997) argued that the results of a simulation — which rely on inputs specified by the
decision maker — cannot provide any information about the reasonableness of the inputs. An
opposite perspective is suggested based on the ‘reverse Monte Carlo’ method sometimes used
in the physical sciences (Lenoble, 1985; Petty, 1994), which “exploits obvious symmetries
with respect to the direction of time ” (Petty, 1994). This perspective suggests that the
decision maker’s beliefs about both inputs and outputs are symmetrically affected by the
results of the simulation. The results of this paper present an intermediate view: The results
of a simulation do affect the decision maker’s beliefs about the reasonableness of the inputs,
although not in the same way as they affect beliefs about the outputs.

4 Conclusions

Bayesian methodology clearly specifies how to update beliefs about a variable on the basis
of information about that variable, or other variables. However, many statistical analyses,
instead of providing information about variables, provide information mainly about the re-
lationship between variables. As we show, an exact Bayesian approach to this problem can
be defined when the decision maker’s prior implicitly presumes the same kind of relationship
as specified in the statistical analysis. When the prior is Gaussian (and the statistical model
is linear), deriving the Bayesian posterior distribution is straightforward. As we show, the
resulting posterior distribution coincides with the result arising from an approach based on
combining forecasts.



We then examine the Bayesian solution when the relationship is specified through sim-
ulation or the results of experiments. While the formulas for the mean and variance are
somewhat similar, the posterior distribution of X is no longer Gaussian, even though the
conditional distribution of Y given X remains Gaussian.

Our results show that current practices in modeling and simulation generally understate
the degree of uncertainty associated with their results. This arises because priors on both
inputs and outputs should be updated based on the results of the model and simulation
results. Since current practices do not revise priors on inputs, they typically adjust priors
on outputs more than is appropriate. The resulting overestimation of the informativeness of
model and simulation results can have serious practical implications.

The current paper provides a solution which is valid under certain restrictions (e.g., the
assumption of linearity). While satisfied in certain social science applications, further work is
needed to relax these restrictive assumptions, This could eventually enable the development
of user-friendly software (similar to the updating software that already exists) for updating
both model inputs and outputs simultaneously. This would lead to a more rigorous approach
to output analysis both for simulation in particular as well as for more general contexts.
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5 Appendices

5.1 Appendix I

To determine the scalar aq, the column vector o and the variance of ¢y, define the variance
of Y, its covariance with X, and the mean of Y, respectively, by

Yvy = o'Yxxa+ Var(e)
Yyxy = a'Yxx
my = Qg+ Oé/mX

Then the parameters of the linear equation, ¥ = ag + o’X + ¢y, can be inferred from
Eyy, EXY, my, llSiIlg

! -1
! -1
) = My —amx =My — UxyXlyxMx
/ -1 -1 / -1
VCLT(E()) = ZYY_CVEXXO[:EYY_ZXYZXXEXXEXXEXY:EYY_EXYEXXZXY
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5.2 Appendix II

Let Z be the vector whose first components are X and whose last component is Y — f.
Define the row vector B whose first elements are —3 and whose last element is 1. If X is a
K by 1 vector, then

(Bo+BX -Y)=XBX+ (Y —3)*—2X'B(Y — )
Hence the posterior probability is
Pr {XY|5y, 8} x exp(—=Z'BB'Z)/2v) Pr {XY} (5)
Unlike the traditional inverse variance-covariance matrix, BB’ is singular.

If X,Y are Gaussian with means myx, my and variance-covariance matrix X, then 7 is
Gaussian with its first components having mean m, and its last component having mean
my — (3. If the variance-covariance of Z is X, then

Pr{X,V} x exp(—;(Z’ —my)SYZ — my)

so that

BB’

1
Pr {X,Y|0o, B} x exp(—§[Z’[ ot Y NZ = 2my S 7 + my Y my))

where all values of X,Y are possible because of the normality of the error term. Following
conventional arguments in Raiffa and Schlaiffer, define

BB’ BB
W=(—+2)'=3(+—7x)"
v v
so that .
Pr.{X,Y |8, B} x eXp(—§Z’W_1Z +myX17)

Defining

My = myX "W = miy(I + BB'S/v)™"
implies

1 _
Pr {X,Y|fBy, B} exp(—g[Z’ — m'Z|¢]W 7z~ mz|e))
so that Z is Gaussian with mean my, and variance-covariance 1. Cross-multiplying
My, = my(I + BB'S [v)™!

by I + BB'Y /v gives
My + My, BB'S v = my

Cross-multiplying by B gives

My B +myBB'YB/v=myB
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Dividing by 1+ B'YB/v gives

m', B
1+ B'YB/v

Substituting this expression into the previous equation:

Mg+ My, BB v =mly

gives
m’,B
/ 7Z / _
which can be rewritten as
BB'Y,
mae =maAl = R

Note that —mzB = (g + mx[ — my is the expected error in the model given the
decision maker’s priors. The term w = er%#EB reflects the proportion of the overall variance
— attributable to the variables and the model — attributable to a specific variable. Hence,

we have

mzw — My = —szw
Also note that since BE BE
W= "1+ )y h=(I+ ¥)'e
v v
we have BB
W+ W Y=
v
and B
WB+W—-¥YB=%YB
v
so that 5B/
)
B=—F"—
w 1+ B'YXB
Substituting into W + WBTB/Z =Y gives
W =B sy s
N — V=
1+ B'YB
Hence BE'S
=3l ——]=X(I - B
W=3ll - pyg! = w)
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5.3 Appendix III

To compute the combined ‘forecast’ (Bordley, 1986), we need to apply the following steps:

1. compute the variance-covariance matrix between the two forecasts

EYOYO 2YoYl
2Y[)Yl EYl Y1

2. construct the inverse variance-covariance matrix

Xvivy . _ Evpvy .
( (21’1Y1EYOYO_EYO,Y1 (EY1Y12Y0YO_EYO,Y1 )
Evpyy vy, vy
_ — 0_,
Evivi Evpyg EYO,Y1 (Evivi Evpyg EYO,Y1

3. assign my, a weight inversely proportional to ¥y,y, — Xy;y;, and my a weight inversely
proportional to Xyyy, — Xyyy; -

Since Xy y, = F'Yxxf + v and Xy,y; = X xy, the combined forecast will be
my = my (1 —w}) + wimy, = my (1 —wi) + (Go + F'mx)ws
where

Yvove — B v x
Yyvevy — 202y, x + ¥ xxB+v

wy =

5.4 Appendix IV

We can write

Pr{XY|X(¢),Y(t),t €T} =PrAY()|X,Y,X(t),t € T|XY} Pr {X(t)|X,Y,t € T} Pr{XY}

Since X (t), by itself, provides no information about X, Y, this becomes
Pr{X,Y|X(t),Y(t),t €T} =PrA{X,Y}Pr{Y()|X,Y, X(t),t € T}

We can condition on # and write

Pr {Y(t)|X,Y, X(t),t € T} = /ﬁPr.{Y(t)]X, Y, X(t),8,t € TYPr {B|X,Y, X(¢t),t € T}

Now Y = Gy + /X + e and Y(t) = By + ' X(t) + €(t). Thus observing Y(¢) is the same
as observing €(t) = Y (t) — fp — /X (t). In addition, knowing Y and X tells us that [y
must equal Y — 3’X — e. Thus, the probability density of Y'(¢) can be determined from the
probability density of

et)=Y(l)-Y+0(X-X(t)+e
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Defining €*(t) = €(t) — € implies that
Pr{Y ()| X,Y,X(t),5,teT}=Pr{c(t)=Y({#) - Y +0(X - X(1)|X,Y,X(t),5,t €T}

If we assume €(t) and € are Gaussian and independent, then this is proportional to

[Texp(-=(Y(t) =V + /(X = X(®))(Y(#) - Y + (X = X(1))))

teT

which equals
exp(=>_(Y(t) =Y + 3'(X = X (1)) (Y () =Y + 5'(X = X(1))))

teT
Define y(t) =Y (t) = Y, z(t) = X(t) — X, and €*(t) = €(t) — € so that y(t) = f'x(t) + €*(t)
Since € is Gaussian with variance v and independent of €(t), €(t) — € has variance 2v. As a

result, we have
Pr Y (D) XY, X(t),t € T} /ﬂ [ Pr {e(t)}f(B1X,Y)d3
teT

= [esp(— X WO IO, a1 va

teT

Define EQ = Y cr % Then the above equation becomes

Pr{Y()|X,Y,X(t), t €T} m/ﬁexp(— =
= /BeXp(—Z)(E(yQ(t)) —268'E(y(t)z(t)) + B E(x(t)2'()8)) f(B| X, Y)dB

Letting V,, = E(x(t)2'(t)) and r = E(y(t)x(t)) gives

[ (=g, (5 = VLB = Vi) + BGRO) — 'V VLV ) F(BX Y )

Assuming 3 conditionally uniform given X, Y and integrating gives
T T 2 -1
PriY()IX, Y, X(t),t € T} oc Vel exp(=~(E(y"(t)) — r'Vyr))

Rewriting E(y?(t)), Vs, and r explicitly in terms of Y and X gives

E(y*) = B((Y(t) = Y)") = (Y = E(Y))* + E(Y () - E(Y))?)

Vo = (X — E(X))(X — E(X)) + E[(X(t) - E(X))(X(t) — E(X)))]
E(y®)z(t)) = (Y — EQ)(X — E(X)) + E((X(1) — E(X(1)))(Y(t) — E(Y(1))))
Let V = [(X(t) — E(X))A(X(t) — F(X))] describe the variation in the simulation inputs.
Using a Cholesky decomposition of V', define lower triangular matrix S such that S’S =V,
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and define s such that s> = F[(Y(t) — Y)?]. Define renormalized variables y = =200 and
z=S5"1(X — E(X)). In terms of these variables, we have

E(y*(t) = s°(y* + 1)

Ve =Sz +1)S
Defining C' = s~'rS~! gives
r=slyr+ C|S
Also define V' = [2/x + I]. Substituting into the expression for Pr {Y ()| X,Y, X (¢),t € T}
gives

Z;\Vx\ exp(—j;(sj(y2 +1) = s[yx + C19[S(2'z + 1) S| 7' S[zy + C]s))
Vol exp(— (4 = [y + CIIT + /2] oy +C])) =
Vel exp(—jf:(y(l —all +a'z] " x)y) — 201 +a'a] ey — O[I +2'2]7'C)

To evaluate this expression, note the following three tautologies

l—z@e+1"r = 1—2[l -2+ 222’y — o'z’ va’s + . ]2
= 1—xz' +2'xd'v — w2’z + ...
1+ a%)

Cl+2z) 'y = C[I—a'z+a2'va" — .oy

[Cx — Ca'a’x + Ca' (' xa’x) — .y
= Cay[l — 2’z + 2"z — ..]

= Cuaxy/[1 + 2'x]

Cl[l+2z)]7'C = CO[I —a'z+2'za’v — .. |C
= C'C—Ca'z2C' + Ca'(z2')xC" — ...
= (C'0) — (C2)*[1 — (x2) + (w2'z2’) — ...]

— C/C— (Ox/)Q
1+ xa
Substituting these three tautologies into the expression gives
Ts*, 92 2Cxy (Ca')?
Pr{Y()|X,Y,X(t),teT} = |V, — — _
r Y ()XY, X (1), t € T} Velexp(-— -2 ~ 10w T1eaw ~ OO
Ts? (y — Cx)?
= |V, —
A e )

Since y = X=E20) g-1(X — F(X)) = 2 and r = sCS, this becomes

Ts*((Y = E(Y))/s = (r/s)(X — E(X))?)
4u[l + 2'x]

|Vx‘ eXp(_
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TY-EY)—-r(X—-E(X)))? )
W+ (X = E(X))S15 (X — BE(X))]
Since V! = S71S571 our final result for Pr .{Y (#)|X,Y, X (¢),t € T} becomes

TY =Y —r(X — B(X)))?
Wl + (X — BX))V (X = BE(X)),

=1+ (X - EX)S'S™X - E(X))| " exp(—

|7+ (X = E(X))VH(X — E(X))|"" exp(— )

which gives the result in the text.

5.5 Appendix V

To compute the marginal distribution of x, we will integrate y out of the joint distribution
of y and .

X T o oco(_ L ¥ 2ylre) (o) (g = mye)®
B L s e L
o ! 1.1 1, T Myl (r'z)? N m, 3

@ P T T TR T @ TS,

We now rearrange terms to create a quadratic term depending on y and a separate term
independent of y, in order to integrate out y.

Pr 1% 7 o~ exp( L Ly e ;l;;lzy Lo 1m2, (U ;Z'ZV)
r.{z,y x exp y— —= —=
(x) 2°v(x) By ﬁ + zylylw 2 v(z) 23y ﬁ + ﬁy‘x
Integrating out y gives
1 2 (r'z) ylz
A A ol 1(’]’”&})2 1m z (v(z) 2 z>
Pr{z|X,Y} o — 5 —(F) exp(—i o(2) —szl +— ke )
v(@) T Dyl vyle v(z) vylz
2 m2 ((J(; i )2 A A
Let Q = Z(z)) 1< " + yi“” ) so that Pr.{z|X,Y} = exp(Q). We now rearrange
vule @ B
the expression for @) to get o
Q = 1@z 1 My n (U%) - 2“($)Eyzu + Zi\m)
= i i
2 U(JZ) 2 Eyy‘x (@) Syule
B S M 1 NP QNN o R
Z(ﬁ + zylylz) v?(z) U($)Zyylm ZZW U(x)zyylr v?(z) U<5’7)Zyylr Ezy\x
_ 1 - (r'z) _ m§|x +2(7"/m)my‘x]
2(% + ﬁyll) v(2) e v(2) Sy (@) Zyylo
2
= — 1 [(T/I) o my|ff]2
2(1}(x) + ﬁ) U(.I) Eyy\x

which, with minor rearranging, becomes the result in the text.
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