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Statistical Decisionmaking Without Math 
Robert Bordley

In his presidential address to the American Statistical 
Association in 1991, Vince Barabba emphasized that, to 
stay relevant, statistics needed to have an impact on execu-

tive decisionmaking in business and government. However, as 
statistical theory involves mathematics—which most execu-
tives either never learned or have forgotten—rigorous commu-
nication between statisticians and executives is difficult. Even 
established techniques for applying statistical decision theory 
to executive problems require knowledge of mathematical 
probability theory. As a result, trained decision consultants 
are usually required to do the required mathematical analysis 
privately and communicate the basic insights without math-
ematics. In this way, they help clients convince themselves of 
the proper course of action (versus trying to convince clients 
to accept the recommendations of a mathematical ‘analysis’).

But the vast majority of people, in addition to being unable 
to do the analyses themselves, cannot easily access decision 
consultants. To address this problem, we develop a purely 
visual method for applying decision theory that involves no 
mathematics. In developing this method, we are motivated 
by the success of the Venn diagram in making probability 
visual and the success many others have had in constructing 
visual proofs. 

Elements of the Visual Approach 
Visually Communicating Uncertainty Using Size 

We represent a gamble as a 
rectangle followed by two 
adjacent rectangles describ-
ing the possible outcomes 
of this gamble. The relative 
size of the adjacent rectangles 
for each outcome describes 
the chance of that outcome 
occurring. Thus, Figure 1 indi-
cates the gamble is likely to 
lead to Outcome2, but does 
have some smaller chance of 
leading to Outcome1.

Figure 1.
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If we imagined throwing a dart at the two rectangles adja-
cent to the “Gamble” rectangle, the odds of the dart landing 
in the top rectangle (as opposed to the bottom rectangle) 
reflects the odds of having Outcome1 occur (as opposed to 
Outcome2.)

Now suppose Outcome2 was another gamble that was 
likely to lead to some payoff called “Outcome4,” but had a 
small chance of leading to Outcome3. To show that Outcome2 
is a gamble, Figure 1 would be replaced by Figure 2.

Figure 3.

While all outcomes are potentially affected by future uncer-
tainties, we can usually identify outcomes that can be consid-
ered relatively certain (for the purposes of the decision we are 
making). Following L. J. Savage in his book The Foundations 
of Statistics, we call such outcomes “consequences.” 

Visually Communicating the Desirability of Gambles  
Using Color 

We use the term “best possible” (and “worst possible”) to 
describe the best possible (and worst possible) consequence 
that might arise from any of the decisions being considered. 
We define a basic gamble as a gamble that has some chance of 
leading to best possible and otherwise leads to worst possible. 
Figure 3 presents a specific basic gamble called “Risk.”

Figure 4.

Figure 5.

We arbitrarily use white to color the rectangle for the best pos-
sible outcome and black to color the rectangle for the worst 
possible outcome. Coloring Figure 3 yields Figure 4.

The next step is to color the “Risk” rectangle. To do so, imagine 
that the “Best Possible” and “Worst Possible” rectangles are cans 
of paint with the volume of each can being proportional to the 
rectangle’s size. Imagine that both cans are emptied into the can 
represented by the “Risk” rectangle. This mixing of paints colors 
the “Risk” rectangle with the dark grey color shown in Figure 
5. Note that changing the probability of the gamble leading 
to best possible adjusts the relative heights of the “Best Pos-
sible” rectangle and “Worst Possible” rectangle which, in turn, 
adjusts the color assigned to the “Risk” rectangle. This mixing 
procedure can assign colors to all possible basic gambles.

Figure 6a.

Figure 6b.

For any consequence other than best possible and worst 
possible, we first identify a basic gamble that is just as desir-
able as that consequence. (This usually involves comparing 
the consequence with many basic gambles.) Our visual pro-
cedure colors this consequence with the same color as the 
gamble. Using this procedure, we assign colors to all possible 
consequences. 

A visual proof 

We now present a visual proof of an important result in 
decision theory. Consider the gamble in Figure 6a with two 
possible outcomes: Consequence 1 and Consequence 2.

As both consequences are just as desirable as their corre-
sponding basic gambles, we can rewrite the “Risk” by adding 
these corresponding gambles, as shown in Figure 6b.

Figure 2.
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Figure 6c.

Figure 6d.

Because a decision’s desirability is assumed to be determined 
by its final payoffs, we can erase the stack of intermediate out-
comes and write the gamble as leading to the four outcomes 
shown in Figure 6c. 

Merging the two adjacent “Best Possible” rectangles and 
the two adjacent “Worst Possible” rectangles creates the basic 
gamble in Figure 6e (so that the “Risk” rectangle can be col-
ored using the procedure for coloring basic gambles.) Thus, 
coloring gambles involving consequences is equivalent to 
coloring basic gambles. This justifies the coloring procedure 
presented in the text. 

Figure 6e.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Rearranging the order in which the rectangles are listed 
gives Figure 6d.

As the visual proof in Figure 6 shows, these assignments 
determine how colors should be assigned to all other possible 
gambles. As an illustration, consider the “Risk” rectangle shown 
in Figure 7. Color the rectangles for consequences 1 and 2. 
Just as was done for basic gambles, treat these two rectangles 
as cans of paint and ‘pour’ them into the “Risk” rectangle. This 
creates the appropriate color for the “Risk” rectangle. This 
‘mixing’ procedure also is applicable to gambles with more 
than two outcomes.

Visually Describing Decisions 

To distinguish between a decision and a gamble, we represent 
a decision by a rectangle connected by arcs to the possible 
choices for the decision (see Figure 8). 

As Figure 9 shows, we then color the outcomes of the deci-
sion. Now if a decision were like a risk, the decision rectangle 
would be colored by mixing colors from the “Risk” rectangle 
and the “Risk*” rectangle. But in a decision, we can choose 
which outcome happens. So we choose to make the better 
(lighter) outcome, “Risk,” happen. We then color the “Deci-
sion” rectangle with the light grey color of the “Risk” rectangle 
(see Figure 10.)
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Figure 12.

Figure 14.

Demonstration of Visual Decision Analysis  
A Textbook Decision Problem 

Consider a risky project with a small chance of achieving its 
goals and a large chance of failure. If the project achieves its 
goals, there is an even chance of the project having a high 
payoff versus a low payoff. You must decide whether to invest 
resources in the project. (Both payoffs and resources could be 
nonmonetary as well as monetary.) Thus,

	 You are first confronted with a decision (e.g., whether to 
do the project) 

	 You then make that decision 

	 If you decide to do the project, you learn whether the 
project is successful 

	 If the project succeeds, you learn whether the payoffs will 
be high or low 

To construct the visual representation, draw a sequence of 
stacked rectangles in the order in which the corresponding 
outcome occurs, with the relative size of a rectangle within 
a stack describing the chance of the event occurring (see 
Figure 11).

To determine the best decision, you first assess the relative 
desirability of the rightmost outcomes: “Don’t Invest,” “failure,” 
“low payoff,” and “high payoff.” The best outcome, “high pay-
off,” has its rectangle colored white, while the worst outcome, 
“failure,” has its rectangle colored black. Other outcomes are 
given intermediate colors (see Figure 12). (Technically, these 
assessed colors for the end rectangles correspond to the ‘util-
ity,’ or ‘loss,’ of getting these outcomes as payoffs.) We now 
discuss how this color assignment leads to colors for all the 
other rectangles.

Note that we cannot yet specify how to color the rectangle 
“Invest?,” as it is followed by the rectangle, “Invest,” which has 
not been assigned a color. But we can specify how to color the 
rectangle “success,” as it is followed by two rectangles, “high 
payoff” and “low payoff,” which have been colored. Because 
the two rectangles are outcomes of risk, we color the “success” 
rectangle by mixing the colors of the “high payoff” and “low 
payoff” rectangles. This gives Figure 13. 

Now consider the remaining uncolored rectangles. Note 
that the “Invest” rectangle is now followed by two colored 

rectangles. Because the two colored rectangles, “failure” and 
“success,” are risks, we can color the “Invest” rectangle by mix-
ing their colors. As the “failure” rectangle is bigger than the 
“success” rectangle, this gives Figure 14. (Technically, the color 
assigned to Invest is just the utility of getting the high payoff, 
weighted by the probability of getting high payoff, plus the 
utility of getting low payoff, weighted by the probability of 
getting low payoff, plus the utility of failure, weighted by the 
probability of failure. This is called the expected utility or 
expected loss of Invest.) 

Figure 13.

Figure 11.
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Figure 15.

This leaves only one uncolored rectangle, “Invest?”. Since 
this rectangle is now followed by two colored rectangles, 
“Invest” and “Don’t Invest,” which are decision outcomes, we 
make the decision Don’t Invest, as it has the lighter color, and 
color Invest? with this lighter color (see Figure 15). (This cor-
responds to the central theorem of decision analysis: A ratio-
nal individual always chooses that decision with the highest 
expected utility or the smallest expected loss.) 

The Textbook Decision Problem with Perfect Information 

For a more complicated example, consider the previous prob-
lem where we first learn the outcome of one of our uncertainties 
(i.e., the potential payoffs of a successful project) before making 
a decision. In this case, the following would take place: 

	 You begin with uncertainty about the payoff of the 
potential project

	 You then learn what the potential payoff of a successful 
project could be 

	 You then decide whether to do the project 

	 You then learn whether the project was successful

The visual formalization of this problem is shown in Figure 
16. As before, “high payoff” and “low payoff” have the same-
sized rectangles, while the “failure” rectangle is much larger 
than the “success” rectangle.

The next step involves coloring the rightmost rectangles 
using information from the original diagram. Two of the end 

rectangles in this new diagram, “Don’t Invest” and “Failure,” 
were end rectangles in the original diagram. To be consistent 
with this original diagram, we use dark grey to color both of 
the “Don’t Invest” rectangles and black to color both of the 
“Failure” rectangles.

But the outcome, “Success,” was not an end rectangle in 
the original diagram. To determine its color, note that the 
uppermost success event presumes a high project payoff. 
Because a successful project with a high project payoff led 
to a white rectangle in the original diagram, we color this 
uppermost “Success” rectangle white (see Figure 17). In con-
trast, the lowermost “Success” event presumes a low project 
payoff. Because a successful project with a low payoff led to a 
light grey rectangle in the original diagram, we use light grey 
to color this second “Success” rectangle. The colors assigned 
to these end rectangles will now be used to infer colors for all 
the other rectangles. 

Figure 16.

Figure 17.

Figure 18.

The next rectangles that can be colored are the “Invest” 
rectangles, which in both cases are followed by equally sized 
“Success” and “Failure” chance rectangles. Mixing colors appro-
priately gives Figure 18.

We then color the “high payoff” rectangle, which borders 
two decision rectangles (italicized and underlined). Because 
the lighter rectangle is “Invest,” you choose to invest (if you 
learn the payoff is high) and color the “high payoff” rectangle 
light grey (see Figure 19). To color the “low payoff” rectangle, 
note that the lighter-colored rectangle is “Don’t Invest.” So, 
you decide not to invest (if you learn the payoff is low) and 
color the “low payoff” rectangle an intermediate dark grey.

Finally, we color the project “payoff” rectangle by mixing 
the color of the two chance rectangles, “high payoff” and 
“low payoff” (see Figure 20). Note that you only change your 
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Figure 21.

original decision (to not invest) if the information indicates 
the project payoff is high.

We now compare the starting rectangle for the original 
problem (without perfect information) and this modified 
problem (with perfect information). Note that the rectangle 
for the problem with perfect information is lighter (see Figure 
21), indicating it is more desirable. To quantify how much 
more valuable the second problem is, suppose we altered the 
modified problem by requiring the individual pay a fee for 
the perfect information. Incorporating this fee would make 
all the consequences of the modified problem less desirable, 
and thus would darken all the end rectangles. We could solve 
the problem with this modification and determine the new 
color attached to the starting rectangle with the fee for perfect 

Figure 19.

Figure 20.

information. When the fee is large enough, the color of the 
starting rectangle will match the color of the original problem. 
The fee will represent the value of perfect information. 

Conclusions
Visualization is widely accepted as a useful technique for mak-
ing statistical results more transparent. But making the results 
of the analysis (and even the input data) transparent does little 
good if the user does not understand and distrusts the analysis 
that led to those results. We showed how the entire analysis 
(as well as input data and results) could be made visual. Hence, 
it makes decision analysis (and thus statistical methods) more 
accessible to a wider audience. 

Our visual approach does have certain limitations. While 
there will be a visual difference between an event of probability 
0.25 and an event of probability 0.26, most individuals will 
not be able to discern such a small difference in our diagrams. 
In many problems, this lack of precision is acceptable. But 
there will be some problems where precision is important. 
(For example, a risk leading to a 1% chance of death might be 
treated very differently than a risk with a 1 in a 1,000 chance of 
death.) When confronted with these kinds of problems, indi-
viduals probably do need to consult a quantitative expert. 

However, an individual who uses our approach for deci-
sions in the many contexts where imprecision is acceptable 
will certainly become more familiar with statistical thinking. In 
becoming a “visual statistician,” this individual also will have a 
better comprehension of the analysis of a statistical expert on 
those problems where precision is essential. And this may lead 
to an improved acceptance of expert statistical analyses. 
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